Math 101 Chapter 4/Section: 3 Topic: Saving for the Long Term, Worksheet

Finish the formulas for the following in terms of:
$\mathrm{t}=$ number of deposits, $\mathrm{y}=$ years, $\mathrm{r}=$ monthly interest rate, $\mathrm{APR}=$ annual percentage rate

1. Balance after t monthly deposits $=$
2. Needed monthly deposit $=$
3. Monthly annuity yield =
4. \quad Nest egg needed $=$

Match the following questions to the equations (1-4) above:
__ How much money would you need to deposit each month in order to reach your desired result?
___ If you start with money in the bank and withdraw the same amount of money for each month, how much would you be able to withdraw each month?
\qquad How much money you would have after depositing money for t months?
\qquad If you know how much money you want to withdraw each month for ' t ' months, how much do you have to start with

Solve the following problems:

1. You open a savings account and deposit $\$ 200$ into it at the end of each month. The account pays you a monthly interest rate of 1.5% on the balance in the account at the beginning of each month. At the end of the first month the balance is $\$ 200$. At the end of the second month the balance is $\$ 403$. Track the growth of this account through 6 months. (*Hint: New balance $=$ Previous balance + Interest + Deposit. You start with $\$ 0$ in your savings account.)
2. Suppose we have a savings account earning 8% APR. We deposit $\$ 30$ into the account at the end of each month for 4 years. What is the account balance after 5 years?

Math 101
Worksheet
3. How much do you need to deposit each month into your savings account that has an APR of 9% in order to have $\$ 30,000$ for your college education in 3 years?
4. Suppose we have $\$ 1,000,000$ in the bank with an APR of 6.3% compounded monthly. Find the monthly yield for a 30 -year annuity.
5. Suppose your retirement account pays 4.9% APR compounded monthly. What size nest egg do you need in order to retire with a 20 -year annuity that yields $\$ 5,000$ a month?

Math 101
Worksheet

ANSWER KEY:

Finish the formulas for the following in terms of:
$\mathrm{t}=$ number of deposits, $\mathrm{y}=$ years, $\mathrm{r}=$ monthly interest rate, $\mathrm{APR}=$ annual percentage rate

* Right Column: This is when the rate (r) is given in the problem as a yearly rate (APR). The yearly rate (APR) must be divided into 12 months because the problem is asking about monthly deposits.

1. Balance after t monthly deposits $=$

2. Needed monthly deposit $=$

$$
\frac{\text { Goal } \times r}{\left((1+r)^{t}-1\right)} \quad \frac{\text { OR }}{\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)}
$$

3. Monthly annuity yield $=$

$$
\frac{\text { Nest egg } \times r \times(1+r)^{t}}{\left((1+r)^{t}-1\right)} \quad \frac{\text { OR }}{\frac{\text { Nest egg } \times \frac{\mathrm{APR}}{12} \times\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}}{\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)}}
$$

Math 101

ANSWER KEY

4. \quad Nest egg needed $=$

Monthly annuity yield $\times\left((1+r)^{t}-1\right)$
$\frac{\text { Monthly annuity yield } \times\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)}{\left(\frac{\mathrm{APR}}{12} \times\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}\right)}$

Match the following questions to the equations (1-4) above:
__2_ How much money would you need to deposit each month in order to reach your desired result?
__3_ If you start with money in the bank and withdraw the same amount of money for each month, how much would you be able to withdraw each month?
__1_ How much money you would have after depositing money for t months?
__ __ If you know how much money you want to withdraw each month for 't' months, how much do you have to start with?

Math 101
Worksheet

ANSWER KEY

Solve the following problems:

1. You open a savings account and deposit $\$ 200$ into it at the end of each month. The account pays you a monthly interest rate of 1.5% on the balance in the account at the beginning of each month. At the end of the first month the balance is $\$ 200$. At the end of the second month the balance is $\$ 403$. Track the growth of this account through 6 months. (*Hint: New balance $=$ Previous balance + Interest + Deposit. You start with $\$ 0$ in your savings account.)

Use Formula:

$$
\text { New balance }=\text { Previous balance }+ \text { Interest }+ \text { Deposit }
$$

Balance after 1 deposit $=\$ 0+(\$ 0 \times 0.015)+\$ 200=\$ 200$
Balance after 2 deposits $=\$ 200+(\$ 200 \times 0.015)+\$ 200=\$ 403$
Balance after 3 deposits $=\$ 403+(\$ 403 \times 0.015)+\$ 200=\$ 609.05$
...and so on

At end of month \#	Interest paid on previous balance	Deposit	New balance
1	$\$ 0$	$\$ 200$	$\$ 200$
2	1.5% of $\$ 200$	$\$ 200$	$\$ 403$
3	1.5% of $\$ 403$	$\$ 200$	$\$ 609.05$
4	1.5% of $\$ 609.05$	$\$ 200$	$\$ 818.19$
5	1.5% of $\$ 818.18$	$\$ 200$	$\$ 1030.46$
6	1.5% of $\$ 1030.45$	$\$ 200$	$\$ 1245.92$

Math 101
Worksheet

ANSWER KEY

2. Suppose we have a savings account earning 8% APR. We deposit $\$ 30$ into the account at the end of each month for 4 years. What is the account balance after 4 years?

Use formula:

Balance after t monthly deposits $=$

$$
\begin{aligned}
& \frac{\text { Deposit } \times\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)}{\left(\frac{\mathrm{APR}}{12}\right)} \\
&= {\left[\$ 30 \times\left([1+0.08 / 12]^{\wedge}(12 \times 4)-1\right)\right] /[0.08 / 12] } \\
&=1690.497
\end{aligned}
$$

The balance after 4 years is $\mathbf{\$ 1 6 9 0 . 5 0}$
3. How much do you need to deposit each month into your savings account that has an APR of 9% in order to have $\$ 30,000$ for your college education in 3 years?

Use formula:

Needed monthly deposit $=$

$$
\begin{gathered}
\frac{\text { Goal } \times\left(\frac{\mathrm{APR}}{12}\right)}{\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)} \\
=[\$ 30,000 \times(0.09 / 12)] /\left[(1+[0.09 / 12])^{\wedge}(12 \times 3)-1\right] \\
=\$ 728.992
\end{gathered}
$$

Round up because if you round down you will not reach your goal.
You need to deposit $\$ \mathbf{7 2 9 . 0 0}$ monthly

ANSWER KEY

4. Suppose we have $\$ 1,000,000$ in the bank with an APR of 6.3% compounded monthly. Find the monthly yield for a 30 -year annuity.

Use formula:

Monthly annuity yield =

$$
\begin{aligned}
& \frac{\text { Nest egg } \times \frac{\mathrm{APR}}{12} \times\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}}{\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)} \\
& =\left[\$ 1,000,000 \times(0.063 / 12) \times(1+0.063 / 12)^{\wedge}(12 \times 30)\right] /\left[(1+0.063 / 12)^{\wedge}(12 \times 30)-1\right] \\
& =\$ 6189.728
\end{aligned}
$$

The monthly annuity yield is $\$ 6189.73$
5. Suppose your retirement account pays 4.9% APR compounded monthly. How much do you need in order to retire with a 20-year annuity that yields $\$ 5,000$ a month?

Use formula:

Nest egg needed =

$$
\frac{\text { Annuity yield goal } \times\left(\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}-1\right)}{\left(\frac{\mathrm{APR}}{12} \times\left(1+\frac{\mathrm{APR}}{12}\right)^{(12 y)}\right)}
$$

$$
=\left[\$ 5,000 \times\left([1+0.049 / 12]^{\wedge}(12 \times 20)-1\right)\right] /\left[(0.049 / 12) \times(1+0.049 / 12)^{\wedge}(12 \times 20)\right]
$$

$$
=\$ 764,007.253
$$

Round up because if you round down you will not reach your goal.
The nest egg needed is $\mathbf{\$ 7 6 4 , 0 0 7 . 2 6}$

Math 101
Worksheet

Citation: Crauder, Bruce. Quantitative Literacy.. [VitalSource Bookshelf].
URL:
https://bookshelf.vitalsource.com/\#/books/9781319055721/epubcfi/6/2\[\%3Bvnd.vst.idref\% 3DCover $\% 5 \mathrm{D}!/ 4 / 2 \% 5 \mathrm{BFC} \% 5 \mathrm{D} / 2 \% 5 B c o v e r i m g \% 5 D / 2 \% 400: 49.6$

Math 101
Worksheet

